云南药材网—专业的药材资讯网站
当前位置:首页/真菌药材> 抗真菌药前景,为什么用抗真菌药物越用越无效

抗真菌药前景,为什么用抗真菌药物越用越无效

本文目录一览为什么用抗真菌药物越用越无效2,为什么目前抗真菌的抗生素很少3,白醋泡脚治灰指甲吗治灰指甲抗真菌药物的副作用大吗4,请问真菌是不是很难治疗好5,合成抗菌药的最新发展6,抗真菌药物7,咪唑类抗菌药的发展与趋势8,磺胺类抗菌药的……

本文目录一览

1,为什么用抗真菌药物越用越无效

因为会产生抗性抗生素尽量不要使用对健康有好处
二者的抗菌谱不同,有的抗真菌药只能针对某一部分真菌,而广谱抗真菌药物的抗菌谱更广泛一些,对很多真菌都有抑制和杀灭作用。

抗真菌药前景

2,为什么目前抗真菌的抗生素很少

1、真菌是真核生物,可以说是高等生物了,生命力顽强,很少有其他生物能够产生有效对抗真菌的物质。2、既然是真核生物,相对比较高等,和人类的细胞特征也相对拥有更多共同点,不容易找到有特效的药物。要说原因,也就这些了,其实抗真菌药物主要用唑类等合成药物效果还能明显点,对抗真菌的抗生素效果不明显,研究的人也就少了,发展的就慢了。

抗真菌药前景

3,白醋泡脚治灰指甲吗治灰指甲抗真菌药物的副作用大吗

只要确定是灰指甲了,是具有传染性的。如果一个拇指有灰指甲,不及时治疗的话,早晚10个手指都会有灰指甲。灰指甲不仅会传染自己也会传染给他人,但这种传染是有条件的,比如免疫力差的人容易被传染,易感人群容易被传染。灰指甲有一定的传染性,大量致病真菌聚集在甲板中、甲床上,成为致病真菌的储库,随时随地脱落下的灰指甲屑中有大量致病菌,通过搔抓或者轻微外伤即成为全身皮肤癣菌病的传播源,在家庭或集体生活中与他人共用浴室、足盆、毛巾或拖鞋等,进入公共浴池、游泳池、桑拿浴室、舞厅等都会导致致病性灰指甲真菌的传播,对社会人群造成感染。为了防止灰指甲相互传染,一旦发现灰指甲应及时的进行治疗。灰指甲的治疗在选择上也是很有讲究的,传统的药物疗法是把病甲软化后脱落,让其自己长出新甲,虽然相比用工具除甲痛苦少点,可是在病甲去除后例如穿鞋,步行等活动还是非常不方便,稍有不注意很容易造成感染,而且生长出新指甲的时间较长。而苗阈灰甲宁的杀菌成分与目前市场上同类产品有本质的不同,其国际首创采用的先进纳米银技术的杀菌率远远超过常用药物。其独创的三位一体疗法在有效去除病甲的同时能够快速而有效的长出新甲,从真正意义上能够做到无需修甲拔甲、没有副作用。除了苗阈灰甲宁外,日常对于灰指甲的保健也是很重要的:1、高蛋白饮食:高蛋白饮食是维持健康指甲所必需的,蛋黄是蛋白质的好来源。燕麦片、核果、种子、谷物、豆制品都富含植物蛋白。2、多吃蔬菜水果:水果和蔬菜应占每日饮食的50%。3、补充营养素:① 蛋白质(含各种单一基酸)用量依产品标示,氨基酸是指甲的组成物,使用氨基酸较快被吸收及利用② 维生素A或维生素A乳剂:用量每天分别为15000IU或每天25000IU。体内若无维生素A,则无法利用蛋白质,乳剂较快被吸收利用。③啤酒酵母:用量依产品标示。含各种必需营养素,并富含蛋白质。④钙及镁及维生素D;用量依产品标示。它们是指甲生长所必需的营养元素。⑤硅(燕麦杆茶及木贼);用量依产品指示。是头发、骨骼及指甲所需之物。⑥ 铁质;用量依产品标示。缺铁会造成汤匙指甲和纵向突脊。⑦维生素C;用量每天300毫克。倒刺及指甲附近的组织发炎与缺乏维生素c有关。⑧维生素B添加核黄素(B2)、Bl2、叶酸缺乏维生素B,易使指甲脆弱。

抗真菌药前景

4,请问真菌是不是很难治疗好

病情分析:真菌属于维生素,一般治疗上主要使用抗真菌类药物治疗,但是如果是人的抵抗力不好的话,单纯凭抗生素是很难治愈的。意见建议:建议积极的使用抗真菌类抗生素药物治疗,必要时配合免疫调节剂治疗。
请问患部在哪?有什么其它症状?真菌感染往往需要治疗周期较长,疗效不定定的情况,需要祥述症状,方可对症采取措施。

5,合成抗菌药的最新发展

新型合成抗菌药研究进展迅速 目前,抗菌药研究仍以抗耐药菌感染药物为重心,具有新作用机制与全新结构的新化合物研究受到业内的关注。迈入本世纪迄今,先后有16种新型抗菌药首次上市,还有一些颇有开发前景的化合物正在研究中。 喹诺酮类研究两大动向 喹诺酮类药物研究出现两个值得关注的动向。第一,继续研发第四代氟喹诺酮,第二,注意研究结构变幅更大的喹诺酮。 第四代氟喹诺酮能比较均衡地作用于DNA促旋酶与拓扑异构酶IV两个靶位,在保持强革兰阴性菌活性的基础上,增强了抗革兰阳性菌与厌氧菌活性,并对支原体、衣原体等有效。近年上市的有吉米沙星与巴洛沙星。 目前正在研发中的氟喹诺酮类有多种。西他沙星抗菌活性强,MIC90:葡萄球菌≤0.06μg/ml,A组与B组链球菌≤0.125μg/ml,粪肠球菌1μg/ml,屎肠球菌0.5μg/ml,耐甲氧西林金葡菌(MR鄄SA)为1μg/ml,对临床分离的耐喹诺酮的铜绿假单胞菌的活性比当前应用的品种强得多。西他沙星本身无抗真菌作用,但与二性霉素B、氟康唑、咪康唑等抗真菌药有明显的协同作用。 奥鲁沙星结构与西他沙星相似,抗菌活性亦相匹敌。ABT-492与DK-507k抗菌活性比莫西沙星、佳替沙星强,而且对耐喹诺酮的肺炎链球菌亦有较强作用。DQ-113对多重耐药性革兰阳性菌有作用,MIC为0.004~2μg/ml。AVE-6971抗甲氧西林敏感菌(MSSA)与MRSA的MIC50/MIC90分别为0.5/0.5与0.5/1.0μg/ml,已完成I期临床试验。 还有一个重要趋势,就是结构变幅更大的喹诺酮类药物研究得到关注。近年上市的帕珠沙星、鲁利沙星结构与一般喹诺酮有很大不同,前者的主核7-位与环丙基的碳相连(C-C键),后者1,2位与含硫四元环并联。但抗菌活性、药动学性能、安全性与一般第三代喹诺酮无明显差异。 非氟喹诺酮格林沙星(garenoxacin,BMS-284756,T-3811)抗肺炎链球菌、溶 血性链球菌、MRSA、CNSA等活性比环丙沙星、莫西沙星、哌拉西林/他唑巴坦、氨苄西林/舒巴坦、亚胺培南强,具有良好的药动学性质,已进入III期临床试验。 PGE-9262932对环丙沙星、喹诺酮高度耐药的MRSA,耐青霉素肺炎链球菌(PRSP),有很强的活性。对屎肠球菌的MIC90>2.0μg/ml,在试验过的43种600株临床分离菌(包括革兰阳性与阴性菌)中有85.3%能被≤1μg/ml的PGE-9262932抑制,药动学性质与已应用的氟喹诺酮相似,但毒性低于相应的氟喹诺酮。DX-619对耐甲氧西林、万古霉素与喹诺酮的金黄色葡萄球菌有作用,据MIC90比较,其抗菌活性比环丙沙星、左氧氟沙星强32倍,比加替沙星、莫西沙星强16倍,已完成I期临床试验。研发中的非氟喹诺酮还有奈诺沙星。 还有一些新型的2-吡酮类化合物。ABT-719对MRSA、耐环丙沙星的金葡菌、表葡菌和肠球菌等有很强活性,对耐环丙沙星的铜绿假单胞菌、耐万古霉素的屎肠球菌和脆弱拟杆菌亦有较强作用。A-165753与A-170568抗菌谱广,对需氧菌与厌氧菌包括脆弱拟杆菌都有较强活性。ABT-255抗结核分支杆菌(包括现有抗结核药的耐药菌)活性优于利福平、异烟肼与乙胺丁醇,MIC在0.016~0.031μg/ml之间,抗金黄色葡萄球菌、肺炎链球菌与大肠埃希菌的MIC分别为0.015、0.03与0.015μg/ ml,ED50各为2.5、3.6与1.0mg/kg(口服)。 恶唑烷酮类研究日趋深入 上世纪末问世的利奈唑酮是全新的恶唑烷酮类化合物,其抗菌作用与万古霉素相似,对葡萄球菌、肺炎链球菌、酿脓链球菌、无乳链球菌、粪肠球菌、屎肠球菌等革兰阳性球菌有强大抗菌活性,对MRSA、PRSP和VRE仍然保持高度活性。 近年来,恶唑烷酮类抗菌药研究正逐步深入,发现活性更强和对革兰阴性菌也有一定作用的化合物,如AZD-2563、DA-7867、PUN-171933、PUN-179954、Ranbezolid(RBX7644)、VEC-3783以及吡嗪并吲哚或恶嗪并吲哚取代的新恶唑烷酮等。其中AZD-2563抗菌活性强,PUN-171933对流感杆菌、黏膜炎莫拉氏菌亦有作用,两者已进入临床试验,DA-7867活性更强,抗MRSA的MIC为≤0.06~0.25μg/ml(利奈唑酮在同样条件为1~2μg/ml),抗粪肠球菌与屎肠球菌的MIC为0.06~0.12μg/ml(利奈唑酮为0.5~2μg/ml)。 新型抗结核药不断涌现 当结核杆菌对传统抗结核药耐药情况越来越严重时,不断涌现出来的具有抗结核作用的新化合物给人们带来希望。 硝基咪唑并吡喃类化合物PA-824具有双重作用机制,既抑制结核杆菌的蛋白质合成,又抑制细胞壁霉菌酸合成,对增殖期的与发育休止期的结核杆菌都有杀菌作用,与现有的抗结核药不交叉耐药,抗多重耐药性结核杆菌的活性与敏感性结核杆菌相同。该药在小鼠与豚鼠结核杆菌感染实验模型上进行短期与长期口服治疗试验中,都获得与异烟肼相同或更好的疗效,是当今最引人注视的品种之一,正在进行临床试验。 二芳基喹啉类化合物TM-207作用于向分支杆菌生长提供能量的三磷酸腺苷合成酶质子泵,能抑制所有的分支杆菌,并不与临床应用的抗结核药包括莫西沙星等交叉耐药,在大鼠模型上单药治疗与目前标准三联(利福平-吡嗪酰胺)治疗同样有效。 被纳入新结核药物研究开发的品种还有:吡咯类化合物BM-212、LL-3858、二氢咪唑并恶唑类化合物OPC-67683、二哌啶类化合物SQ-609、长链磺酰胺类化合物N-辛磺酰基乙酰胺与苯并[c]菲啶类化合物苄卡利铵与乙卡利铵等。 抗深部真菌药受重视 过去应用的合成抗真菌药有20余种,但可用于治疗深部真菌感染的仅有咪康唑等5种。本世纪上市的10余种合成抗真菌药中有3种可用于深部真菌感染:即伏立康唑、磷氟康唑与最近上市的宝刹康唑。该药抗念珠菌活性与依曲康唑相似,抗曲霉菌活性比两性霉素B强(MIC达0.06~0.22μg/ml)。 正在研究开发中的抗真菌药有:①瑞夫康唑,抗菌性能与伏立康唑相似,T1/2长达83~157h。②BAL-8557抗念珠菌,曲霉菌活性强,水溶性好,正进行II期临床试验。③CS-758(R120758)抗耐氟康唑的念珠菌属活性有明显改善。④KP-103抗念珠菌,曲霉菌。⑤TAK-456抗念珠菌,曲霉菌,新型隐球菌活性较强。⑥SS-750结构虽较简单,但抗念珠菌属、曲霉菌属与隐球菌属活性强,生物利用度高(75%),蛋白结合率低(50%),尿中排泄率为75%。⑦阿巴康唑抗新型隐球菌活性比氟康唑强100倍。⑧阿唑林具有较强抗念珠菌,皮肤真菌与鳞斑霉活性。 比较传统的二氢叶酸还原酶抑制剂类也有一些新的化合物被发现有抗菌活性。例如,克拉普林具有较强的抗革兰阳性菌(包括MRSA等耐药菌)活性,II期临床试验有效率90%以上,革兰阳性菌清除率80~90%。目前,正在进行III期临床试验。另外,研究人员还发现,对现有抗生素耐药菌有作用的化合物有:螺异恶唑衍生物KY-9、新喹啉-吲哚衍生物SEP-32196与SEP-132617、联苯羧酸酯类化合物NE-2001。 来源:中国医药报

6,抗真菌药物

你问的很专业,我也很专业的回答你,一般来说,抗真菌药和抗生素是不同的两类,都属于抗感染的药,盐酸特比萘芬服用时间长,它会导致肠道菌群的失调,会引起益生菌的减少,对我们的肝脏毒副作用也比较大,会产生耐药性!
抗真菌药和抗生素不是一个概念,常见的对人有害微生物分为真菌和细菌等,抗真菌药是杀灭有害真菌,抗生素是杀灭有害细菌。看真菌药不会引起肠道益生菌菌群失调,但是会引起其他真菌失调。所有抗生素抗真菌药都会产生抗药性。

7,咪唑类抗菌药的发展与趋势

它属于抗菌药物类,是一类很重要的药物,是人们抵御病原微生物的重要武器,随着科技的发展和研究水平的不断提高,大量新的抗菌药物不断涌向市场,使人们在抵御感染性疾病的同时有了更多的选择。但抗生素不能滥用,滥用抗生素会导致耐药菌株不断产生,使一些抗菌药物在应用过程中逐渐失去原有的功效。因此,合理选择抗菌药物,对于提高药物的疗效,减少不良反应的发生,以及减少医药资源的浪费,具有重要的意义
唑类抗菌药可分为咪唑类和三唑类,咪唑类包括酮康唑,咪康唑,益康唑和克霉唑等,酮康唑可作为治疗表浅部真菌感染首选药,三唑类包括伊曲康唑,氟康唑和伏立康唑等,可作为治疗深部真菌感染首选药。 与咪唑类相比,三唑类对人体细胞色素P450的亲和力降低,而对真菌细胞色素P450仍保持高亲和力,因此毒性小,抗菌活性更高,是目前抗真菌药中最有发展前途一类。

8,磺胺类抗菌药的新发展与趋势

磺胺类药物具有抗菌谱广、性质稳定、价格便宜及有多种制剂可供选择的优点。磺胺类药物的基本结构为对氨苯磺酰胺。它可干扰细菌叶酸的合成而影响其生长繁殖,磺胺类药物与对氨苯甲酸发生竞增争性抑制所致,对氨苯甲酸是对磺胺类药物敏感的细菌合成叶酸的必须物质,有了叶酸才能逐步合成核酸,直至综合成核蛋白,以保证细菌的生长繁殖。细菌在利用对氨苯甲酸合成叶酸的过程中,对氨苯甲酸需要与细菌体内二氢叶酸合成酶相结合。磺胺类药物因化学结构与对氨苯甲酸相似,故亦能与细菌利用对氨苯甲酸的此种酶相结合,于是发生争夺细菌的这种酶,以致细菌不能利用对氨苯甲酸合成叶酸,导致核蛋白不能合成。而达到抑菌和杀菌的目的。磺胺药是最早用于抗感染的合成药,具有性质稳定、抗菌谱广、易于生产、价格低廉、使用方便等特点。属于广谱慢效抑菌药,通过干扰敏感的叶酸代谢而抑制其生长繁殖。该类药物与对氨苯甲酸发生竞增争性抑制所致,对氨苯甲酸是对磺胺类药物敏感的细菌合成叶酸的必须物质,有了叶酸才能逐步合成核酸,直至综合成核蛋白,以保证细菌的生长繁殖。细菌在利用对氨苯甲酸合成叶酸的过程中,对氨苯甲酸需要与细菌体内二氢叶酸合成酶相结合。磺胺类药物因化学结构与对氨苯甲酸相似,故亦能与细菌利用对氨苯甲酸的此种酶相结合,于是发生争夺细菌的这种酶,以致细菌不能利用对氨苯甲酸合成叶酸,导致核蛋白不能合成。而达到抑菌和杀菌的目的。

9,大环内酯类抗菌药的发展与趋势

组合生物合成促进大环内酯类新药开发与发展 大环内酯类抗生素是一类具有12~16碳内酯环的药物,是抑制蛋白质合成的快速抑菌剂,为现今最为常用的口服抗菌药物之一,对需氧革兰氏阳性菌和部分革兰氏阴性菌、支原体、衣原体、军团菌、弯曲菌和幽门螺旋杆菌有很好的抗菌作用,广泛应用于感染性疾病和非感染性疾病的治疗,如人埃立克体病(HE)、小螺菌鼠咬热、疟疾、弓形虫脑炎、放线菌病和复发性斑疹伤寒等。此外,大环内酯类抗生素还具有对心血管疾病的防治作用、促进腹部手术后胃肠功能恢复、细胞穿透作用和驱除家畜肠内寄生虫等。因此,大环内酯类抗生素是一类重要的药物,学术界应该继续深入研究,开发效果更好的新药。   目前,从自然界得到具有预期性质的抗生素越来越困难,研究人员越来越多的转向用组合生物合成技术来开发新的药物。组合生物合成技术是在基因水平上由微生物合成各种各样的化合物,其研究是建立在化合物已知的生物合成途径的基础上,通过对产生抗生素微生物的次生代谢产物合成途径中涉及到的一些酶的编码基因的操作,来获得可能具有生物活性的衍生物或具有新结构的已有药物类似物。一般来说,对基因的操作主要有:敲除、插入和互换等。经过基因操作后,同时表达来自不同生物合成途径的单个基因,这些基因编码的酶互补发挥作用从而产生新的非天然的“天然”产物。事实上,这些酶往往连接成巨大的多酶联合体,从而成为一个“域”,合成反应就沿着这个“域”的方向进行。因此,组合生物合成的途径就要求将数个合成酶以尽可能多的方式融合成单个酶“域”,以使酶的组合链能产生更多改变了的化合物。近来的研究表明,这些杂交的酶能“忠实的”完成它们的预期任务。   由于内在的基因结构特征和产生聚酮代谢物的能力,聚酮合酶(PKS)是组合生物合成技术的一个重要组成部分。PKS主要分为三类,Ⅰ类PKS主要由酮基合成酶(KS)、酰基转移酶(AT)、脱氢酶(DH)、烯酰还原酶(ER)和酰基载体蛋白(ACP)等功能域组成。KS、AT、ACP是链延伸反应的“最小PKS”,延伸完成的长链由硫酯酶(TE)功能域催化环化成红霉素的前体6-脱氧红霉内酯B(6-DEB);Ⅱ类PKS是含有一组可重复使用单元的多酶复合体,其催化链的延伸使之成为一个很长的中间体,然后通过区域专一性的催化形成芳香族聚酮化合物,如四环霉素;Ⅲ类PKS是一种可重复使用的同源双亚基蛋白,在不需要ACP的情况下直接催化泛酰辅酶A间的缩合,只要合成单环就能使双环芳香类聚酮化合物的生物合成成功。现在我们所提到的PKS多指Ⅰ类PKS。目前研究比较多的PKS有苦霉素(Pik)、泰乐霉素(Tyl)、6-脱氧红霉内酯(DEBS)等的PKS,其中尤以PikPKS的研究较多。   聚酮化合物及其他微生物代谢产物通常没有生物活性,还需经过后期修饰,其中一般有糖基化的过程,而所接上的糖一般是某种形式的脱氧糖,所以相应的将脱氧糖合酶称为DOS,由于DOS对PKS化合物的重要性,并根据其基因的可操作性,一般把对DOS基因的操作也归入组合生物合成的范畴。   此外,非核糖体肽合成酶(NRPS)的研究也是组合生物合成研究的一个部分。它的合成过程和Ⅰ类PKS十分相似,也是由起始、链延伸及终止各模块组成。一个腺苷化反应的活化“域”将特定的氨基酸转换成腺苷酸,然后这个氨基酸和邻近肽载体蛋白(PCP)上的硫基形成硫酯,PCP之间的缩合功能“域”催化肽键形成,研究人员通常叫其“最小NRPS”,经过几个延伸过程,最后硫酯酶“域”将完成的肽切下。   大环内酯类抗生素是通过聚酮途径合成的,组合生物合成技术在进一步开发新的大环内酯类抗生素的研究中具有广阔的前景。例如,国外学者Yeo Joon Yoon等人利用委内瑞拉链霉菌产生的苦霉素系统,把编码PikAⅣ的基因敲除,并将泰乐霉素的TylGⅤ基因利用质粒为载体,转入PikAⅣ基因敲除的变异株,使来源于染色体和质粒的基因互补产生杂交的酶系统合成了新的大环内酯类物质,其具有明显的生物活性,能显著抑制枯草芽孢杆菌的生长。   委内瑞拉链霉菌的Pik系统中,三种关键的酶和其独特的基因簇体系使这个紧凑的系统能产生多种大环内酯抗生素。最重要的是,PikAⅢ和PikAⅣ作为独立的蛋白质的出现和TE“域”能使聚酮链在两个不同的位点终止,从而产生两种不同大小的环系(12和14元环);其次,Pik系统中的糖基转移酶DesⅦ能接受12和14元环两种环系作为底物进行糖基化反应;最后一点,PikC,即P450羟化酶,具有很强的底物和化学区域特异性,从而使这一系统呈现多样性。由18个基因产生的少于60kb的DNA能产生四大类的活性大环内酯抗生素,Pik系统是学术界认为的至今为止最简单但最实用的模块PKS系统。   组合生物合成技术为发现新化合物开辟了一条新途径。在5年多的时间里,人们已经利用组合生物合成技术发现了200多个新的聚酮化合物,这些化合物中的大多数是不可能或很难用现有的其他方法得到的。未来对PKSs、NRPSs和DOS的结构和酶学的深入研究以及它们之间的组合变换操作,组合生物合成与DNA改组技术的结合,都将能使我们得出更好的新药合成策略,得到更多的新结构化合物,并逐步解决变异株产量降低的问题。组合生物合成技术的未来无疑将是非常光明的。

10,抗炎药物的发展史和现状

l9世纪末,化学工业的兴起,Ehrlich化学治疗概念的建立, 为20世纪初化学药物的合成和进展奠定了基础。例如早期的含锑、砷的有机药物用于治疗锥虫病、阿米巴病和梅毒等。在此基础上发展用于治疗疟疾和寄生虫病的化学药物。20世纪30年代中期发现百浪多息和磺胺后,合成了一系列磺胺类药物。1940年青霉素疗效得到肯定,β内酰胺类抗生素得到飞速发展。化学治疗的范围日益扩大,已不根于细茵感染的疾病。随着1940年woods和FildeS抗代谢学说的建立,不仅阐明抗菌药物的作用机理,也为寻找新药开拓了新的途径。例如根据抗代谢学说发现抗肿搐药·利尿药和抗疟药等。药物结构与生物活性关系的研究也随之开展,为创制新药和先导物提供了重要依据。30比~40年代发现的化学药物最多,此时期是药物化学发展史上的丰收时代。  进人50年代后,新药数量不及初阶段,药物在机体内的作用机理和代谢变化逐步得到阐明,导致联系生理、生化效应和针对病因寻找新药·改进了单纯从药物的显效基团或基本结构寻找新药的方法。例如利用潜效(Latentiation)和前药(Prodrug)概念,设计能降低毒副作用和提高选择性的新化合物。1952年发现治疗精神分裂症的氯丙嗪后·精神神经疾病的治疗,取得突破性的进展。非甾体抗炎药是60年代中期以后研究的活跃领域,一系列抗炎新药先后上市。  60年代以后构效关系研究发展很快,已由定性转向定量方面。定量构效关系(QSAR)是将化合物的结构信息、理化参数与生物活性进行分析计算,建立合理的数学模型,研究构-效之间的量变规律,为药物设计、指导先导化合物结构改造提供理论依据。QSAR常用方法有Hansch线性多元回归模型,Free-WilSon加合模型和Kier分子连接性等。所用的参数大多是由化合物二维结构测得,称为二维定量构效关系(2D-QSAR)。50~60年代是药物化学发展的重要时期70年代迄今,对药物潜在作用靶点进行深入研究,对其结构、功能逐步了解。另外,分子力学和量子化学与药学科学的渗透,X衍射、生物核磁共振、数据库、分子图形学的应用,为研究药物与生物大分子三维结构,药效构象以及二者作用模式,探索构效关系提供了理论依据和先进手段,现认为SD-QSAR与基于结构的设计方法相结合,将使药物设计更趋于合理化。  对受体的深入研究·尤其许多受体亚型的发现,促进了受体激动剂和秸抗剂的发展,寻找特异性地仅作用某一受体亚型的药物,可提高其选择性。如β和α肾上腺素受体及其亚型阻滞剂是治疗心血管疾病的常用药物;组胺H2受体阻滞剂能治疗胃及十二指肠溃疡。内源性脑啡酞类对阿片受体有激动作用,因而呈现镇痛活性,目前阿片受体有多种亚型(如δεγηκ等)为设计特异性镇痛药开拓了途径。  酶是高度特异性的蛋白质,生命活动许多是由酶催化的生化反应,故具有重要的生理生化活性。随着对酶的三维结构、活性部位的深入研究,以酶为记点进行的酶抑制剂研究,取得很大进展。例如通过干扰肾素(Renin)-血管紧张素(Angiotensin)-醛固醇(Aldosterone)系统调节而达到降压效用的血管紧张汞转化酶(ACE)抑制剂,是7O年代中期发展起来的降压药。一系列的ACE抑制剂如卡托普利、依那普利·赖诺普利等已是治疗高血压、心力衰竭的重要药物。3羟基-3-甲戊二酰辅酶A(HMG-CoA)还原酶抑制剂,对防治动脉粥样硬化、降血脂有较好的疗效。噻氯匹定可抑制血栓素合成酶·用于防治血栓形成。  离子通道类似于活化酶存在于机体的各种组织,参与调节多种生理功能。7O年代末发现的一系列钙拮抗剂(Calcium Antagonists)是重要的心脑血管药,其中二氢砒锭啶类研究较为深入·品种也较多,各具药理特点。近年发现的钾通通调控剂为寻找抗高血压、抗心纹痛和I类抗心律失常药开辟了新的途径。  细胞癌变认为是由于基因突变导致基因表达失调和细胞无限增殖所引起的,因此可将癌基因作为记点,利用反义技术(antisense technology)抑制细胞增殖的方法,可设计新型抗癌药。  8O年代初诺氟沙星用于临床后,迅速掀起喹诺酮类抗菌药的研究热潮,相继合成了一系列抗菌药物,这类抗菌药和一些新抗生素的问世,认为是合成抗菌药发展史上的重要里程碑。  寻找内源性活性物质是药物化学研究的内容之一,近年来发现许多活性多肽和细胞因子·如心钠素(ANF)是8O年代初从鼠心肌匀浆分离出的心房肽,具有很强的利尿、降压和调节心律的作用,内皮舒张因子(EDRF)NO是同时期证实由内皮细胞分泌具有舒张血管作用的物质,其化学本质后证实是一氧化氮(Ho)。它是调节心血管系统、神经系统和免疫系统功能的细胞信使分子,参与机体的多种生理作用,9O年代后,有关NO的研究已成国际的热点。NO供体和NO合酶抑制剂的研究正方兴未艾,将为心血管抗炎药等开拓新的领域。  生物技术(生物工程)是近2O年发展的高新技术,医药生物技术已成为新兴产业和经济生长点。9O年代初以来上市的新药中,生物技术产品占有较大的比例,并有迅速上升的趋势。通过生物技术改造传统制药产业可提高经济效益,利用转基因动物-乳腺生物反应器研制、生产药品,将是21世纪生物技术领域研究的热点之一。   近年来发展的组合化学技术,能合成数量众多的结相关的化合物,建立有序变化的多样性分子库,进行集约快构速筛选,这种大量合成和高通量筛选,无疑对发现先导化合物和提高新药研究水平都具有重要意义。  70-90年代,新理论、新技术、学科间交叉淮透形成的新兴学科,都促进了药物化学的发展,认为是药物化学承前启后,继往开来的关键时代。   人们认为20世纪中、后期药物化学的进展和大量新药上市,归纳为三方面主要原因:(l)生命科学,如结构生物学、分子生物学、分子遗传学、基因学和生物技术的进展,为发现新药提供理论依据和技术支撑(2)信息科学的突飞猛进,如生物信息学的建立,生物芯片的研制,各种信息效据库和信息技术的应用,可便捷地检索和搜寻所需安的文献资料,研究水平和效率大为提高;(3)制药企业为了争取国际市场,投入大且资金用于新药研究和开发(R&D),新药品种不断增加,促进了医药工业快速发展。
【内容整理自网络,若有侵权请联系微信{chihuoyunnan}删除,{因为内容来自网络}凡涉及中药秘方或者处方,需要请专业医生验证后方可使用,切不可自行乱用,本内容只是整理自网络的参考信息】
关键字:
为您推荐
2005-2023   www.ynyao.com 版权所有  内容整理自网络,若有侵权请联系删除。 滇ICP备19000309号-1  

服务热线:192-7871-9469 【微信同号,请注明来意】 网址:www.ynyao.com