云南药材网—专业的药材资讯网站
当前位置:首页/动物药材> 动物药类分离提取表格,如何在excel表格中将单元格中的数字分离出来

动物药类分离提取表格,如何在excel表格中将单元格中的数字分离出来

本文目录一览如何在excel表格中将单元格中的数字分离出来2,动物蛋白提取和分离的方法3,如何将excel的sheet表批量分离成一个个excel文件4,蝎毒的采集分离5,EXCEL表格中一个单元格数字字母文字混合如何分别提取出来6,蛴……

本文目录一览

1,如何在excel表格中将单元格中的数字分离出来

将单元格中的数字提取出来,采取什么办法要视单元格中的数据情况而定。以下为较简单的一种情况:=RIGHT(A1,LEN(A1)-(LENB(A1)-LEN(A1)))

动物药类分离提取表格

2,动物蛋白提取和分离的方法

1.取新鲜组织称重,用眼科手术刀将组织剪成小块放入试管中。2.加入动物蛋白裂解缓冲液,并转移到匀浆器中3.在冰浴条件下用匀浆器低速匀浆至组织完全裂解4.裂解液于预冷的离心机中以12000rmp离心13分钟,上清液立即转移入新的离心管中保存。温馨提示:若短时间不用,可置于4℃保存。较长时间不用,可置于-20℃或更低温度保存。提取:温度保存。防止提取出的蛋白质变性失活。

动物药类分离提取表格

3,如何将excel的sheet表批量分离成一个个excel文件

用sheet的 copy方法在1到worksheet.count里面循环就可以了
sheet2 a1=sheet1!a1 向下拖拽即可其他同理

动物药类分离提取表格

4,蝎毒的采集分离

蝎子在受到激怒的情况下,出于防御或攻击的本能,会从毒囊中排出毒液。蝎毒的采集就是依据这个道理。采集蝎毒的常用方法有剪尾法、机械刺激法和电刺激法三种。剪尾法:夹住蝎的后腹部第五节的两侧,剪下蝎子的尾节,破碎后浸入生理盐水(0.9%的氯化钠溶液)中,浸出有毒部分,再将尾节研磨,用离心机离心(5000转/分)5分钟,重复3次。集中有毒的液体,放入容器内,再制成干毒粉,置于-5℃下保存备用。这种方法,每条蝎子只能采毒一次,而采毒后的蝎子降低了药用功能和经济价值,对蝎子的伤害也大,通常不采用。人工刺激法:用镊子夹住蝎子的一个螯肢,提起悬于容器中片刻,多数蝎子的尾刺即会排出毒液,但也有少数蝎子不排毒液的,不排毒液的可用比如细木筷子等硬物轻碰蝎子的头胸部或前腹部,刺激蝎子的尾刺排毒。电激法:该法是用电子脉冲提毒仪器采集蝎毒的方法。此法采毒量大,工效高,一人操作,全年多次采毒而不致于损害蝎子,是使用较多也较科学的采毒方法。三种采毒方法相比,剪尾提毒法简便、快速、收毒率高,适于大批量采集蝎毒;缺点是活蝎只能供一次采毒,人工刺激法获取的毒液清澈透明,但采毒量较少,工效低,速度慢,对大规模提取蝎毒不适用。 毒素类型及氨基酸序列图册。 电激法获取的毒量较人工刺激法取得的毒量要多1倍。大约3000只成蝎可产湿毒6-7g,可冻成干毒1g,即每毫克湿毒可加工成0.14-0.16mg干毒。每只东亚钳蝎1次可产0.34mg左右的干毒。雄蝎的个体比雌蝎小,其产毒量也比雌蝎少。在电脉冲刺激下,1只雌蝎3次可产湿毒2.59mg,1只雄蝎3次产2.01mg湿毒(按隔7天后采1次毒计算)。但需严格注意卫生,确保采毒的纯度;个别蝎子在通一次电时不排毒,须再通一次电,但通电时间不得超过2秒钟,频率128赫兹,电压6-10伏。以免烧坏仪器和损伤蝎子。蝎子的排毒量随温度的变化高低而各有差异。温度低时排毒量相对较少,当温度低于20℃时,蝎子的排毒量相当少,当低于10℃时,蝎子则停止排毒。因此,常温养殖蝎子要采毒应尽量在6月份气温高于25℃以上时进行。孕蝎和种蝎不能用于采毒。怀孕早期的孕蝎可以采毒,但在临产前不能采毒。用于采毒的蝎子多为商品成蝎和老龄蝎。 蝎毒液成分主要为蛋白质和酶类,容易失去活性。常温下极易变质,必须加工成干毒粉才能保存较长时间。蝎毒液除了马上用于分离纯化者外,应尽快进行干燥。蝎毒干燥的目的,就是尽量除去毒液中的水分,提高粗毒的稳定性,使之便于保存、分析、出售。常用的干燥方法有两种:一,若要保持蝎毒中酶的活力,应选用真空冷冻干燥;二,若仅为了保持毒性,采用真空干燥即可。 (1)真空干燥(即真空减压干燥)是在低压下,使蝎毒液中的水分快速蒸发的方法。真空干燥装置包括真空干器、冷凝管和真空泵。干燥器顶部活塞接通冷凝管,冷凝管的另一端依次连接吸滤瓶、干燥塔和真空泵。蒸汽在冷凝管中凝集后滴入吸收瓶中。干燥器中放有干燥剂(如五氧化二磷等)和蝎毒液样品。使用前,先在干燥器活塞四周涂上少许凡士林,然后检查整个装置是否漏气。使用时,先将蝎毒液和干燥剂分别装入平皿中,然后置于干燥器中,启动真空泵抽气至盖子推不动,依次关闭活塞和真空泵。蝎毒干燥后,应缓缓旋开活塞,以防止空气冲散蝎毒干粉。最后在净化条件下取出干粉,立即分装,密封保存。 (2)真空冷冻干燥先将蝎毒液在低温冰柜中预冻成固体(用不锈钢皿盛装毒液),然后在低温和高真空度上使之升华,即可得到纯白色蝎毒干粉。由于冷冻干燥是在低温和高真空度下进行的,所以毒液在冻干过程中不起泡、不沾壁、疏松、易取出、易溶于水,有利于保存。 蝎毒的分离纯化过程一般是先经过按照分子量大小分离的色谱柱,再经过离子交换柱,最后采用反向HPLC技术,获得单一的组分。程序为:先用CM-Sephadex C-50离子交换层析分离,再用Sephadex G-50过滤,也可采用CM-Sephadex C-50、Sp-Sephadex C-25离子交换柱层析和Sephadex G-50凝胶过滤三步分离程序。如采用CM-Sephadex C-50进行离子交换层析,将毒性较强的组分透析后再用重层析,再用Sephadex G-50凝胶过滤,纯化可得毒素。或采用RP-HPLC对东亚钳蝎的粗毒进行分离,并且用两种不同的HPLC系统反复分离,用0.1%三氯醋酸-水和0.1%三氯醋酸-70%乙醇-水进行梯度洗脱。或进行二级提取,即用CM-Sephadex C-50离子交换层析提取,再用凝胶过滤,经CM-Sephadex C-10除盐。 如采用Sepharose FF阳性离子交换凝胶柱,可望获得较高纯度的单一有效成分。而利用HPCE及HPLC可较好显示蝎毒中小分子多肽的组成及相对含量,其结果基本一致。当下对蝎毒分离纯化的研究就主要集中在通过选择不同柱长、流速和梯度的凝胶层析和高效液相色谱来获得具有高抗癌活性的单一成分的抗癌多肽,比如用三步色谱法在蝎毒中分离得到了抗癫痫肽并测定了其N端50个氨基酸序列,用离子交换色谱和凝胶排阻色谱从粗毒中分离出镇痛肽,用一步CM Sephadex C-50超长柱从粗毒中纯化了镇痛肽,用低压阳离子交换柱和低压排阻柱及离子交换柱从东亚钳蝎中分离和提取了抗肿瘤肽。比如东亚钳蝎镇痛抗肿瘤缬精甘肽(analgesic antitumoral peptide,AGAP),从东亚钳蝎蝎毒中分离纯化得到的单组分活性肽,为单一肽链的单纯碱性多肽,等电点大于10。含有碱性氨基酸,还富含疏水性氨基酸。活性肽的N末端部分氨基酸序列为:VRDGY IADDKNCAYF CGRNA YCDDE。 为获得高纯度的蛋白质,往往需要反复使用凝胶过滤层析和离子交换层析,但这种分离方法的不足之处在于样品损失率太高,且劳动量较大。利用基因工程技术制备蝎毒特异蛋白质的研究正在研制之中,但成本较高,数量有限。因此,蝎毒粗毒的分离仍是获得蝎毒特异性的蛋白质的主要来源。 蝎毒液在普通冰箱(1-4℃)中,只能作短期保存。只有冻干成结晶粉状,才能保存其生理活性。影响蝎毒干粉稳定性的主要因素是水分、空气和温度。当干粉含水量低于10%时,能抑制微生物活性;含水量低于3%时,可抑制化学活性。所以,应将蝎毒干粉分装在小瓶或小管中,并用熔封或石蜡封口,以隔绝空气,然后置于低温冰箱(一30℃)中保存。从养殖场运送新鲜蝎毒液到收购、加工部门或检验部门,必须用广口瓶保温冰瓶(瓶中加碎冰块降温)携带。若运送蝎毒干粉至远处,也应采取降温措施,以防蝎毒蛋白质变性失活。 多数动物类中药的有效成分尚不明确或不完全明确,其提取纯化工艺研究较少,在中成药生产工艺中动物类中药基本是生药粉末直接配料,少数用水、醇提取,水醇法精制。由于动物类中药的有效成分多数是蛋白质类、多糖类等大分子物质或其水解产物,常规方法很难充分地提出、分离和纯化这些大分子物质。 传统上蝎毒以全蝎原粉入药效果更好,也是当下临床常采用的方法。但原粉剂量大、卫生学难合格,同时全蝎多是以产地加工后的产品入药。而全蝎的产地加工一般以清水煮或盐水煮居多,但这两种方法又存在很多不合理的地方,比如有效成分的损失、变性,质量难以控制,盐水煮又因为加盐量不同,使得临床剂量不准确等而使得进一步使用受到限制。 蝎毒素最主要的分类按其分子结构中是否含有二硫键,其中含有二硫键的一类,依其药理学特征,可分为Na+通道、K+通道、Cl-通道和Ca2+通道(主要存在于骨骼肌细胞浆膜上)毒素。这些离子通道是细胞膜表面的一类分子量较大的跨膜糖蛋白,在膜上形成特殊的亲水孔道,是细胞内外离子交换的途径,是神经、肌肉、腺体等许多组织细胞膜上的基本兴奋单元,能产生和传导电信号,具有重要的生理功能。 钠离子通道根据作用方式和结合位点的不同,Na+通道毒素又可分为α型毒素和β型毒素。α-毒素以电压依赖方式作用于Na+通道上的位点3,延缓Na+通道的失活过程,使Na+通道电流衰减减慢,动作电位时间延长,α-毒素可根据其作用对像的不同分为4类:①典型的对哺乳动物高特异性的α-毒素,②作用于昆虫的昆虫型α-毒素,③中间型α-毒素,同时作用于哺乳动物和昆虫的α类似毒素,对哺乳动物和昆虫都有作用,但对哺乳动物毒性更强。 β毒素则结合在Na+通道的位点4上,影响Na+通道的激活过程,使电压依赖的Na+通道激活曲线移向较负的电位。根据β型蝎毒素对昆虫和哺乳动物钠通道的特异性及其作用于昆虫时表现的症状不同又可分为:抗哺乳动物β-毒素,抗昆虫兴奋性β-毒素,抗昆虫抑制性β-毒素和TsVII或γ型蝎毒素。抗哺乳动物β蝎毒素,表现为对哺乳动物的高毒性,并在膜片钳下表现出可调节哺乳动物脑中钠通道电流的作用;抗昆虫兴奋性毒素即使以毫克级别注射到哺乳动物体内(如小鼠脑内)也无毒性表现的;抗昆虫抑制性毒素,经注射性给药可诱发昆虫的迟缓性瘫痪,利用膜片钳技术,抗昆虫抑制性毒素使轴突胞膜动作电位向强去极化方向移动;第四类β-毒素是对于昆虫和哺乳动物的钠通道都有高活性作用,例如Lqhβ1毒素在注射给药于青蝇幼虫时有典型的抑制作用。 钾离子通道第一类是以Charybdotoxin(CTX)为代表,分子中有三对二硫键,配对方式为C1-C4,C2-C5,C3-C6,但CTX对钾离子通道亚型的选择性不高,这反而使得它的用途相当广泛。,从1990年起,ChTx被开发为实验室商品。它可阻断含高电导Ca2+激活的K+通道(BKCa)、电压依赖性K+通道(如淋巴细胞和果蝇Shaker K+通道)、A型K+通道(卵母细胞)、小电导Ca2+激活的K+通道(Aplysia神经细胞),并且可作用于神经细胞、血液细胞和破骨细胞中的电压依赖型Kv1.3(Shaker钾离子通道的一种)钾离子通道。其特征是它们的N端为焦谷氨酸残基,有70%的氨基酸序列相似性,且在分子的第2与第14位上均分别坐落着保守的Phe和Trp残基。类似的毒素还包括CTX-Lq2、1beriotoxin(1bTX)、BmTX和PBTX等。 第二类是Noxiustoxin(NTX)为代表,最早由墨西哥Centruroides noxius蝎的毒素中分离出,包括从5种蝎毒中分离出来的8种多肽,也是最早报道的蝎钾离子通道阻断剂。主要作用于电压依赖性K+通道,延长动作电位持续时间,并且对Ca2+激活的K+通道(KCa)也有微弱的抑制作用。此类毒素有80%的氨基酸序列相似性,而与第一类蝎毒素仅有40%的相似性。NTx能够以剂量依赖的方式可逆地阻断鱿鱼轴突标本的延迟整流钾离子通道、大鼠骨骼肌标本中的BKCa和人T淋巴细胞中的电压依赖型钾离子通道。类似的毒素还有MgTX、CoTX1、CITX、TsKa和HTX等。 第三类是以Kaliotoxin(KTX)为代表,最早从北非蝎Androctonus martetanicus mauretanicus的粗毒中分离得到,包括从7种蝎毒中纯化到的9种多肽,由37-38个氨基酸残基组成。此类毒素有80%-90%的氨基酸序列相似性,而与第一、二类相比有40%-50%的相似性。可以阻断电压依赖性钾通道,包括高电导Ca2+激活的K+通道(BKCa)。类似的毒素还有Ag-itoxin 2(AgTX 2)、AeTX 3、KTX 2和KTX 3等。 第四类是以LTX1、P05、BmP05为代表的毒素,它们均由31个氨基酸残基组成,有84%的氨基酸序列相似性。它们对小鼠的毒性很强,脑室注射的半致死量低于2μg/kg鼠,可以与apamin竞争结合鼠脑突触膜上的apamin受体,能特异性地阻断不同细胞类型中的低电导、Ca2+激活、apamin敏感的钾离子通道(low-conducta-nce,Ca2+-activated,apamin-sensitive K+channel,SKCa)。 第五类为TSK毒素,由巴西产蝎Tityus serru-latus毒素中分离的一种35肽,在C端含有独特的-Cys-Asp-Cys-三肽结构。特异性作用于apamin敏感的小电导Ca2+激活的K+通道(SKCa)。且RodriguesAR等学者发现TsTX-Ka可高亲和力、可逆性地阻断爪蟾卵母细胞上Kvl.3通道(Shaker K+通道的一种亚型)。 第六类是以MTX(Mauxotoxin)为代表,由北非蝎Scorpio maurus毒素中分离出,包括3种蝎毒中分离到的5个多肽,大小介于34~37个氨基酸残基之间,MTX分子中含有与其他毒素位置不同的4对二硫键,为:C1-C4,C2-C5,C3-C6和C7-C8。其他几种的配对方式为:C1-C5,C2-C6,C3-C7,C4-C8。可阻断电压依赖性K+通道,如果蝇的ShakerK+通道、Apamin或KTX敏感的K+通道。类似的毒素还有Pi1、HTX1、Pi4等。 第七类为以P01为代表,由28-29个残基组成,包括从3种蝎毒中分离到的4种多肽,是迄今发现最小分子的蝎毒素组,有76%的氨基酸序列相似性。主要作用于apamin敏感的小电导Ca2+激活K+通道(SKCa),但相对结合能力较弱。对小鼠都毒性很弱(脑室注射至mg水平仍无反应)。因此,尽管将这4个多肽由于结构类似而被归入钾离子通道毒素类,但是它们的主要的功能还有待发掘。类似的毒素还有BmP01和LPII等。 第八类是以BmP02为代表,包括从两种蝎毒中分离到的3个多肽:BmP02、BmP03和LP1,由中国产蝎Buthus martensi Karsch粗毒中分离的28肽,含有3对二硫键,氮基酸序列仅有1个残基差异。微弱作用于apamin敏感的小电导Ca2+激活的K+通道(SKCa),对小鼠没有致死毒性。进一步研究表明BmP02能够减弱兔心肌细胞的瞬时外向钾离子流,因此认为BmP02可以作为研究瞬时外向钾离子通道的工具。 第九类是以BTK-2为代表,由印度红蝎Buthus tamulus的粗毒分离所得的一种K+通道阻断剂,有32个氨基酸通过6个保守的cys交联组成,分子量为3452Da。BTK-2与其他K+通道阻断剂有40%-70%的序列相似性。 当然,这种分组并不是绝对的,各类毒素之间不论在结构上,特别是在生物活性方面都有交叉重叠现象,比如CTX除作用于BKCa外,还作用于淋巴细胞中的Kv,果蝇shaker的Kv,爪蟾卵母细胞表达的A型通道(KA)以及来源于Aplysia的SKCa等;NTX除了抑制Kv外,对钙激活钾通道(KCa)也有弱抑制作用;MTX除了抑制shaker钾通道以外,还抑制apamin和KTX与大鼠脑突触体膜的结合。 钙离子通道这类毒素只分离到了两个:IpTxA和Maurocalcine,从蝎Pandinus imperator和Scorpio maurus palmatus的粗毒中分离得到,均由33个氨基酸残基组成,分子中有3对二硫键,同源性达82%,对小鼠的LD50为20μg/鼠,能够可逆地作用于肌肉型Ryanodine受体(RyRtype 1),使细胞处于持久的亚通透状态。   钙通道毒素富含碱性残基,可以与细胞膜上荷负电的脂肪酸分子相结合,破坏脂双层后进入膜内与胞内Ryanodine受体相作用。与RyRs结合的分子机制同双羟基嘧啶受体II-III环相同,通过与Rryanodine受体之间的作用,激活内质网中Ca2+的释放。 氯离子通道氯通道毒素(chlorotoxin)是从Leiurus quinquestri蝎毒液中经过凝胶过滤,及HPLC分离纯化得到的一种多肽,它对神经胶质瘤特有的氯通道(gliomaspecific chloridechannel,GCC,在正常脑组织中则不含有)有特异亲和力。分子量为4070,有4个二硫键,由36个氨基酸残基组成。类似的毒素还包括BeI1、BeI5、AmmP2等。氯毒素可抑制原发性脑胶质瘤的侵袭、转移。 按作用对象可分为哺乳动物毒素(MTx,在粗蝎毒中含量高达10%-50%),脊椎动物毒素,昆虫毒素,即抗昆虫蝎毒素(ITx,在粗蝎毒中含量低于1%),甲壳动物神经毒素(CTx)。其划分的依据是根据把一定剂量的蝎毒多肽注射进不同的实验动物小鼠、麻蝇或家蝇、等足类甲壳动物,或将药在不同的离体动物或离体标本所表现的中毒反应,相应地进行分类。其中哺乳动物毒素根据药理和电生理效应又可分为 α 和 β 两型,α 型毒素通过抑制细胞膜上钠离子通道失活而使钠电流衰减,动作电位时程显著延长,而 β 型毒素主要影响钠通道的激活,使电压依赖性的钠激活曲线移向较负的膜电位,即去极化引起的兴奋效应。不过现有研究表明,对MTx和CTx的定义并不严格分明,MTx和CTx对3种动物均有不同程度的毒性,只不过对哺乳动物和甲壳动物的麻痹作用更敏感而已,而ITx的定义相对较为合理些。 1971年,Zlotkin等率先从非洲蝎Androctons australis纯化出抗昆虫蝎毒素Aa IT,并建立了抗昆虫蝎毒素的鉴定方法,该方法采用麻蝇Sarcophaga foalconta幼虫为鉴定材料,后来陆续也有采用家蝇、蟑螂、蝗虫等昆虫。依据作用效应可将其分为具有快速收缩型麻痹效应的CP型(excitory-constractive paralysis)和引起昆虫肌肉缓慢松弛直到完全麻痹的FP型(flaccid-depressant paralysis)。 如以受体位点及电生理作用为分类依据,ITx可进而分为4类:兴奋(exceitory)型、抑制(depressant)型、α?型和β型。当然,在抗昆虫蝎毒素中,对哺乳动物(或甲壳动物)和昆虫都有毒性的毒素也有存在,不过其中有些毒素对昆虫的毒性远大于对哺乳动物的毒性。

5,EXCEL表格中一个单元格数字字母文字混合如何分别提取出来

在B1中输入=LEFT(A1,4)C1中输入=SUBSTITUTE(A1,B1,"")选定B1:C1下拉填充。
数字公式:=left(A1,4)后面公式:=right(A1,len(A1)-4)

6,蛴螬提取的主要成分是什么

蛴螬在中医临床中有着悠久的应用历史,近年来,随着人们对蛴螬的深入研究,化学成分的研究也有了新进展,从蛴螬提取物分离出含氮类化合物、有机酸类化合物和甾体类化合物。在药理学方面,蛴螬提取物具有抗肿瘤、治疗口疮和眼部疾病等多种生物活性,是一种极具研究和开发价值的动物药。现将其近年来的化学成分、药理作用研究进展做一综述,以期为进一步开发利用提供参考资料。
虽然我很聪明,但这么说真的难到我了

7,excel中分离数据

可以用word转换成表格,再贴回来即,把所有数据贴到WORD中,使用文字转换成表格,在文字分隔符处,选择名字当中的间隔符。比如(,)为分隔。确定,完成。然后再把这个表格贴回到excel中。
可以把表给我,我帮你试试看 ckcy520@21cn.com 我看了一下一楼的公式,如果楼主说的那一段一段是在一个单元格内是可用的。但要改一下: =(right(a1,len(a1)-find("prix:",a1)-4)) 如果不是在同一单元格就要根据实际情况想其他办法了

8,EXCEL单元格中怎样将部分内容分别提取出来详见附图 问

原表格在这些单元格中,已经定义了数据有效性, 请在数据-有效性中查看.例
在C5、D5、E5中分别输入或复制粘贴此公式=--LEFT(A2,FIND("*",A2)-1)=--MID(A2,FIND("*",A2)+1,FIND("#",SUBSTITUTE(A2,"*","#",2))-FIND("*",A2)-1)=--RIGHT(A2,LEN(A2)-FIND("#",SUBSTITUTE(A2,"*","#",2)))或者=--REPLACE(A2,FIND("*",A2),LEN(A2),)=--LEFT(REPLACE(A2,1,FIND("*",A2),),FIND("*",REPLACE(A2,1,5,))-1)=--REPLACE(A2,1,FIND("#",SUBSTITUTE(A2,"*","#",2)),)
分列 符号为*
看你想要简单的还是复杂的,简单的方法是,复制乘数的公式到右边一个单元格,然后选中,菜单栏选择,数据,分列,下一步,分隔符号选择"其他",在后边输入*,下一步,完成
最简单的办法选中这一列——数据——分列——分隔符号——下一步 勾选 其他 符号中输入"*"(不带引号)下一步完成即可
如果你使用的是excel2007或2010,你可以先选中你需要操作的单元格,然后在“数据”选项卡找到“分列”图标,点击后根据提示输入你的分隔符号“*”即可完成任务。

9,根据大黄中游离蒽醌性质除用双相酸水解法提取外尚可用 哪些提取

本发明涉及植物药中有效成分的提取方法,具体涉及从植物药中提取、分离蒽醌类化合物的方法。蒽醌(anthraquinone)是具有如下骨架的化合物的总称。蒽醌类化合物包括了其不同还原程度的产物和二聚物,如蒽酚(anthranol)、氧化蒽酚(oxanthranol)、蒽酮(anthrone)、二蒽醌(dianthraquinone)、二蒽酮(dianthrone)等,另外还有这些化合物的甙类。在天然产物中,蒽醌常存在于高等植物的蓼科、豆科、茜草科和低等植物地衣类和菌类的代谢产物中。现代药理研究证明,蒽醌类化合物具有很强的生物活性及药理作用。主要有①止血作用:蒽醌类化合物能促进血小板生成,明显增加纤维蛋白原,使凝血时间缩短,降低毛细血管通透性,改善血管脆性,使血管的收缩活性增加,因此能促进血液凝固。②抗菌作用:蒽醌类化合物对多种细菌均有不同程度的抑制作用,其中以葡萄球菌、链球菌最敏感,痢疾杆菌、白喉杆菌、枯草杆菌及伤寒杆菌等也较敏感。抑菌机理主要是抑制菌体糖及代谢中间产物的氧化和脱氢,并能抑制蛋白和核酸的合成,因此可避免临床上某些抗菌素的毒副反应及耐药性。③泻下作用:结合型蒽醌甙类因由糖基的保护,大部分未经吸收直接到达大肠,在肠内被细菌酶分解成甙元和糖。甙元刺激大肠粘膜,并抑制钠离子从肠腔吸收,使大肠内水分增加,蠕动亢进而致泻。④利尿作用:蒽醌类化合物能使尿量增加,并促进输尿管的蠕动,尿中钠钾亦明显增加,而产生利尿降压作用。其作用是通过减少肠道氨基酸的重吸收,抑制肝肾组织中尿素的合成,提高血中游离必需氨基酸浓度,利用体内尿素氮合成体蛋白和抑制肌蛋白的分解,以及增加尿素和肌酐的排泄来完成的。此外,随着基础理论的研究不断深入,为蒽醌类化合物的临床应用提供了理论依据。含蒽醌类化合物的中药制剂在临床上的应用已涉及到诸多疾病的治疗,如可治疗冠心病、粘膜溃疡、淋巴结核、烧烫伤、慢性胃炎、急性胆囊炎、伤骨科疾病、急性脑血管病等危急重症及杂病。植物药中存在的蒽醌衍生物多为羟基蒽醌和它们的甙。大多数的蒽醌甙是蒽醌的羟基与糖缩合而成,也有少数是糖与蒽醌的碳原子直接连接而成。通常结合蒽醌分子量小于500,且溶于水和有机溶剂,游离蒽醌分子量约300左右,易溶于有机溶剂如:乙醚、氯仿、苯、乙醇等,还可溶于碱性水溶液如:氨水、氢氧化钠溶液等,而不溶于水。目前,从天然产物中提取含蒽醌类化合物的产品主要是中草药的粗提物,粗提物的总蒽醌含量不大于20%。中草药中蒽醌类化合物的精制常使用乙醚、苯、氯仿等有机溶剂,虽然所得中药浸膏的总蒽醌含量可达50%以上。但这些有机溶剂均为易燃易爆的有毒有害试剂,如浸膏中溶剂残留量不控制好会对人体造成很大伤害,而且该方法危险性大,对环境也有污染不适合大规模生产。本发明的目的是要提供一种操作简便、安全、无污染、成本低,从植物药中提取的蒽醌类化合物选择性高、有效成分含量高的分离提取方法。本发明从植物药中提取、分离蒽醌类化合物的方法是由下列步骤来实现的:将含有蒽醌类化合物的原药材用通常方法提取获得有效成分粗提物,取粗提物加水,用碱溶液调PH至6.5-10,加入到已装有大孔吸附树脂的吸附柱中,粗提物量(g)与树脂量(ml)重量比为1:10—100;经大孔吸附树脂柱吸附,以水和洗脱液洗脱,收集洗脱液,浓缩、干燥即得含有蒽醌类化合物的浸膏,总蒽醌含量≥50%。本发明所述的粗提物是指含有蒽醌类化合物的原药材用常规方法经水或有机溶剂提取,去药渣,提取液适当浓缩或直接浓缩至干制得的有效成分提取物。粗提物亦可用常用精制法进行预处理。粗提物蒽醌总含量为5-30%。本发明所述的碱溶液是指氢氧化钠、氢氧化钾、氨水等碱性水溶液。本发明所述的有机溶剂是指甲醇、乙醇、丙酮和乙酸乙酯等。本发明所述的大孔吸附树脂为苯乙烯型、2—甲基丙烯酸酯型等大孔吸附树脂,粒度为210~10080目、比表面积为100~300cm2800cm2、/g、孔径1020~50A300A。本发明所述的洗脱液是指甲醇、乙醇、丙酮、乙酸乙酯以及它们的混合液和氢氧化钠、氢氧化钾、氨水等碱性水溶液以及碱性水溶液与上述有机溶剂的混合液。本发明上柱方式也可是先将粗提物用有机溶剂溶解,拌入大孔吸附树脂干粉,然后减压蒸去有机溶剂后上柱。大网格吸附剂是70年代发展起来的一项新技术。国外最早用于废水处理、医药工业、分析化学、临床鉴定和治疗等领域。我国在70年代末开始应用大孔吸附树脂提取、分离中草药化学成分。大孔吸附树脂一般为白色球形颗粒状,理化性质稳定,不溶于酸、碱及有机溶媒。对有机物选择较好,不受无机盐类及强离子低分子化合物存在的影响。大孔吸附树脂为吸附性和筛选性原理相结合的分离材料,与以往使用的离子交换树脂分离原理不同。它本身具有的吸附性,是由于范德华引力或产生氢键的结果。筛性原理是由于其本身多孔性结构所决定。正因为这些特性,使得有机化合物尤其是水溶性化合物的提纯得以大大的简化。从显微形状上看,大孔吸附树脂包含有许多具有微观小球组成的网状孔穴结构。当这些球体由偶极矩很小的单体聚合制得的不带任何功能基的吸附树脂为非极性吸附树脂,例如,苯乙烯—二乙烯苯体系的吸附树脂。这类吸附树脂孔表面的疏水性较强,可通过小分子内的疏水部分的相互作用吸附溶液中的有机物。而中极性吸附树脂系指含酯基的吸附树脂,例如,丙烯酸酯或甲基丙烯酸酯与双甲基丙烯酸乙二醇酯等交联的一类共聚物,其表面疏水性部分和亲水性部分共存。极性吸附树脂是指含酰胺基、腈基、酚羟基等含氮、氧、硫极性功能基的吸附树脂。除此之外,有时把含氮、氧、硫等配体基团的离子交换树脂称作强极性吸附树脂。由于吸附性和筛性原理,有机化合物根据吸附力的不同及分子量的大小,在大孔吸附树脂上经一定的溶剂洗脱而分开。本发明就是利用了大孔吸附树脂中非极性和中性树脂的特点,将植物药中的游离蒽醌和结合蒽醌分离和纯化。本发明用大孔吸附树脂吸附法替代有机溶剂萃取法,从中药粗提物中提纯、精制蒽醌类化合物,避免使用有毒有害溶剂,操作工艺简单、成本低、产品质量易于控制,并适用于大规模生产。使中药制剂有效成分明确、有效成分含量提高到较高水平,为中药制剂走向国际、走向现代化提供了方便。实施例一:从大黄中提取蒽醌类化合物取大黄生药粗粉500g,加适量95%乙醇浸泡12小时后,加热回流提取三次,(三次95%乙醇提取液的量和提取时间分别为800ml、1小时;500ml、0.5小时;500ml、0.5小时),合并提取液,过滤,滤液浓缩至一定体积,上聚酰胺柱,以水和95%乙醇洗脱,收集醇洗脱液,浓缩、干燥得大黄粗提物。取大黄粗提物10g5g,用无水乙醇溶解拌样上大孔吸附树脂柱(树脂结构为苯乙烯型、粒度5020~80目、比表面300cm2400cm2/g、孔径30A100A),以水和95%乙醇洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥58%,收率>3.5%。实施例二:从虎杖中提取蒽醌类化合物取虎杖生药粗粉500g,加适量95%乙醇浸泡12小时后,加热回流提取三次,(三次95%,乙醇提取液的量和提取时间分别为800ml、1小时;500ml、0.5小时;500ml、0.5小时),合并提取液,过滤,滤液浓缩至一定体积,上聚酰胺柱,以水和95%乙醇洗脱,收集醇洗脱液,浓缩、干燥得虎杖粗提物。取虎杖粗提物10g5g,用无水乙醇溶解拌样上大孔吸附树脂柱(树脂结构为苯乙烯型、粒度50目、比表面300cm2400cm2/g、孔径30A100A),以水和95%乙醇洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥52%,收率>3.5%。实施例三:从何首乌中提取蒽醌类化合物取何首乌生药粗粉500g,加适量80%乙醇浸泡12小时后,加热回流提取三次,(三次80%乙醇提取液的量和提取时间分别为800ml、1小时;500ml、0.5小时;500ml、0.5小时),合并提取液,过滤,滤液浓缩至一定体积,上聚酰胺柱,以水和95%乙醇洗脱,收集醇洗脱液,浓缩、干燥得何首乌粗提物。取何首乌粗提物10g5g,用无水乙醇溶解拌样上大孔吸附树脂柱(树脂结构为苯乙烯型、粒度5020~80目、比表面300cm2400cm2/g、孔径30A100A,以水和95%乙醇洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥55%,收率≥3.5%。实施例一:从大黄中提取蒽醌类化合物取已处理好的大孔吸附树脂(树脂结构为苯乙烯型、粒度5020~80目、比表面300400cm2、孔径30100A)120ml,湿法装柱。另取大黄粗提物5g,加水100ml,用4%氢氧化纳调节pH至7~8,搅拌溶解后上样,流速8~15滴/分,待样品全部加完,先用水洗至流出液几乎无色或淡黄色不再改变,换95%乙醇洗脱液洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥58%,收率≥3.5%。实施例二:从虎杖中提取蒽醌类化合物取已处理好的大孔吸附树脂(树脂结构为苯乙烯型、粒度5020~80目、比表面3400cm2、孔径30100A)120ml,湿法装柱。另取虎杖粗提物5g,加水100ml,用4%氢氧化纳调节pH至7~8,搅拌溶解后上样,流速8~15滴/分,待样品全部加完,先用水洗至流出液几乎无色或淡黄色不再改变,换95%乙醇洗脱液洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥52%,收率≥3.5%。实施例三:从何首乌中提取蒽醌类化合物取已处理好的大孔吸附树脂(树脂结构为苯乙烯型、粒度520~80目、比表面3400cm2、孔径3100A)120ml,湿法装柱。另取何首乌粗提物5g,加水100ml,用4%氢氧化纳调节pH至7~8,搅拌溶解后上样,流速8~15滴/分,待样品全部加完,先用水洗至流出液几乎无色或淡黄色不再改变,换95%乙醇洗脱液洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥55%,收率≥3.5%。1、一种从植物药中提取、分离蒽醌类化合物的方法,其特征在于该方法为:将含有蒽醌类化合物的原药材用通常方法提取获得有效成分粗提物,取粗提物加水,用碱溶液调PH至6.5-10,加入到已装有大孔吸附树脂的吸附柱中,粗提物量(g)与树脂量(ml)重量比为1:10—100;经大孔吸附树脂柱吸附,以水和洗脱液洗脱,收集洗脱液,浓缩、干燥即得含有蒽醌类化合物的浸膏,总蒽醌含量≥50%。2、一种如权利要求1所述的从植物药中提取、分离蒽醌类化合物的方法,其特征在于其中所述的大孔吸附树脂为苯乙烯型、2—甲基丙烯酸酯型等大孔吸附树脂,粒度为2010~80100目、比表面积为100~300cm2800cm2/g、孔径10~50A400A。3、一种如权利要求1所述的从植物药中提取、分离蒽醌类化合物的方法,其特征在于其中所述的洗脱液是指甲醇、乙醇、丙酮、乙酸乙酯以及它们的混合液和氢氧化钠、氢氧化钾、氨水等碱性水溶液以及碱性水溶液与上述有机溶剂的混合液。本发明涉及从植物药中提取、分离蒽醌类化合物的方法。本发明用大孔吸附树脂吸附法替代有机溶剂萃取法,从中药粗提物中提纯、精制蒽醌类化合物,总蒽醌含量≥50%,避免使用了有毒有害溶剂,操作工艺简单、成本低、产品质量易于控制,并适用于大规模生产。
【内容整理自网络,若有侵权请联系微信{chihuoyunnan}删除,{因为内容来自网络}凡涉及中药秘方或者处方,需要请专业医生验证后方可使用,切不可自行乱用,本内容只是整理自网络的参考信息】
关键字:
为您推荐
2005-2023   www.ynyao.com 版权所有  内容整理自网络,若有侵权请联系删除。 滇ICP备19000309号-1  

服务热线:192-7871-9469 【微信同号,请注明来意】 网址:www.ynyao.com